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Abstract

We explore various intervals between register assignments and the subsequent uses of the same reg-

isters. We also explore memory stores and the subsequent loads to the same memory addresses. Three

di�erent types of access intervals are de�ned and data are gathered on them using benchmarks. This data

serves to provide insight about how a distributed microarchitecture might take advantage of the register

or memory access behavior in order to reduce the overhead of accessing centralized machine resources

like a register �le (in the case of register operations) or the memory hierarchy in the case of memory

operations. A proposed distributed microarchitecture is brie
y presented and data about its ability to

allow operand bypassing of centralized machine resources to satisfy memory load requests is provided.

1 Introduction

As computer microarchitectures have increased in complexity and size, the need to access and update cen-

tralized microarchitectural resources has become increasing problematic. Access contention for centralized

microarchitectural resources increases substantially as the machine is enhanced to perform a greater and

greater number of operations in parallel. The goal of these microarchitectures is to generally increase pro-

gram execution performance through the extraction of higher amounts of Instruction Level Parallelism (ILP)

from substantially sequential programs. Generally, this is achieved by introducing multiple execution units

into the microarchitecture where each unit can independently process a part of the single threaded program's

instruction stream. However, these multiple execution units still all need access to a common set of archi-

tected machine registers as well as the architected memory of the computer. In addition to access contention

for centralized resources, the routing complexity required to access and update those resources becomes an

increasingly diÆcult implementation issue in the silicon layout.
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Some examplemicroarchitectures that have explored the use of multiple execution units are the Multiscalar-

like processors [14, 15], the SuperThreaded processor model [17], and the Parallel Execution Window proces-

sor model [6]. Other microarchitecture proposals such as the MultiCluster machine model by Farkas et al. [1]

are also in this category. More recently, much work on trace processor microarchitecture models [12, 13, 19]

have also explored multiple distributed execution units and their associated problems. Another example of

a distributed microarchitecture is that of the Grid Processor described by Nagarajan et al. [11]. Further,

microarchitectures have been proposed that feature both a large number of distributed execution units along

with more generalized multipath execution [10, 18]. These machines are very sensitive to the problems

associated with accessing centralized machine resources.

In addition to these research-oriented microarchitectures, it should be noted that processors such as the

Silicon Graphics (SGI) R10000 [22], and the Digital Equipment (DEC) processor such as the Alpha 21264 [7,

8] also feature multiple execution units. Although these latter processors are not generally considered

to feature large distributed microarchitectures, they represent a possible trend as to where commercial

microarchitectures might evolve. As the number of execution units in the microarchitecture increases beyond

eight, sixteen or more, there will be an increasing need to consider the problems associated with accessing

both the memory hierarchy as well as even the architected register �le.

The more obvious examples of centralized machine resources include the register �le (for register access

and update), and the L1 data cache for memory location access and update. Other machine resources also

form bottlenecks to increasing execution parallelism but those are not the focus of this present paper. In

the case of memory, there is a further dimension associated with it beyond the problems of access and

update contention. The additional problem for memory access is the long latencies that can be incurred

especially for memory reads. While the current trend is to use hierarchical memory to mitigate long access

latencies, the problem of handling many accesses simultaneously due to machine parallelism remains. An

example of a microarchitecture mechanism to better handle multiple simultaneous memory requests was the

Address Resolution Bu�er proposed by Franklin and Sohi [3]. An example of providing distributed access to

the architected register �le was described by Jiser et al. in their paper on Global Register Partitioning [5].

However, their approach (and similar to that of the Multiscalar work and the Grid Processor work mentioned

above) includes the use of the compiler to facilitate a total distributed machine model. We are interested in

a more restricted design space where an existing ISA must be maintained such is the case with the R10000

or the Alpha processors.

Our primary goal is to investigate distributed microarchitectures (similar to many of the above examples)

that feature very large instruction windows with multiple distributed execution units. We want to explore

the feasibility of having in-
ight operands (of both register or memory variety) that can bypass both the
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architected register �le as well the traditional L1 data cache and the load-store queue (LSQ) for subsequent

uses of those operands. Although register operand bypassing of the architected register �le has been done for

a long time [16], it has not been expanded into the realm of large and spatially distributed microarchitectures.

Also, as the snooping of the familiar load-store queue can be thought of as bypassing (if there is a hit) the

L1 data cache, it itself simply becomes the next centralized resource for which access contention becomes

the problem. We want to investigate the feasibility of having either register or memory operands bypass

any centralized machine resource entirely. Two general mechanisms can be envisioned to facilitate operand

bypass. One such mechanism is the direct forwarding of a generated operand from the source instruction to

the corresponding sink instructions. This can generally only occur when both the source of the operand and

the instruction sinks of the same operand are both located within the instruction window of the processor

simultaneously. This prompts the question as to how often this can be expected to occur. The second general

mechanism to facilitate operand bypass is the use of bu�ering or caching within the execution window of

the processor. More speci�cally, this would constitute either bu�ering or caching of operands at some

spatial location between operand sourcing instructions and the corresponding sink instructions for the same

operands.

This paper explores the access intervals, as measured in dynamic instructions executed, between assign-

ment to registers and their corresponding uses, as well as the assignment to memory locations (denoted by

a memory address) and their corresponding uses. We de�ne three types of access intervals that we want to

explore. These access intervals are de�ned similarly for both register operations and memory operations.

We have gathered data associated with each of our three access intervals, for both register and memory

operations, through the execution of general purpose sequential program codes. This work was substantially

inspired by the prior work of Franklin et al. [2] in their investigation of register traÆc for use in the context

of the Multiscalar-like microarchitectures. Prior work on memory locality has been substantial including

such work as Madison et al. [9], Verkamo et al. [20], and more recently that of Phalke et al. [21] with their

Inter-Reference Gap model. The present work builds on and extends that of Franklin et al by providing

additional information on register operand traÆc that was not previously reported. We also extend the

previous work of both Franklin et al and Phalke et al by applying our same measurements for register traÆc

operations to memory traÆc operations.

The rest of this paper is organized as follows. Section 2 presents our de�nitions of the access intervals that

we studied along with some signi�cance of those intervals for microarchitectural design decisions. Section 3

presents our characterization results. The results are presented in two parts: 1) for the register operations

and 2) for memory operations. Section 4 presents an application that takes advantage of operand bypass

of centralized machine resources for both registers and memory. The application consists of a proposed dis-
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tributed microarchitecture, brie
y described, that employs techniques to facilitate operand bypass. Results

on the e�ectiveness of operand bypass are given. Section 5 summarizes the present work.

2 De�nitions and Signi�cance of Intervals

There are several possible intervals that can be de�ned with regard to writes to a variable (whether a register

or a memory location) and the corresponding reads of the same variable. We only explore three of these in

this present work since other possible intervals do not have as important signi�cance as the three types of

intervals that we have selected. We �rst provide some de�nitions for the intervals that we have explored and

then give some possible signi�cance to those intervals for microarchitectural design purposes.

2.1 De�nitions of Intervals

We de�ne all intervals in terms of the de�nition (hereafter referred to as a def ) of a variable instance and the

corresponding subsequent use of the same instance of the variable. A write to any variable always constitutes

a def of a new variable instance. A read to a variable constitutes a use of the associated variable instance. For

our purposes, reads and writes occur on variables while defs and uses occur for variable instances. Variable

instances are uniquely identi�ed by both their variable address and their associated def (as identi�ed in

dynamic program ordered time). For registers, the address is generally just its name. For memory variables,

the address is that of the memory location itself. As alluded to already, a write to a variable destroys the

previous instance of the variable while simultaneously creating a new instance of that variable. This idea of

variable instance is the same as that of Franklin et al [2]. A write to a variable is also assumed to constitute

a def of a new variable instance even if the value assigned to the variable is the same as that which it had

already. Uses of variable instances occur when the associated variable is read for any architected reason,

whether this is explicit or implicit to the execution of an instruction.

We explore the following three types of access intervals on both registers and memory locations :

� access-use

� useful-lifetime (or def-last-use)

� def-use

The access-use interval is de�ned as the number of dynamic instructions from a read of a variable to the

closest of a preceding read or write to the same variable. An access-use interval is therefore a property of

a read of a variable. Note that there may be many uses of the same instance of a variable. Each read of

a variable will therefore usually have a di�erent access-use interval associated with it since the number of

dynamic instructions from the def of the variable instance to the current use is usually di�erent. Two uses

may have the same access-use interval when, for example, each is associated with an input operand to a
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single instruction. Our de�nition for the access-use interval is the same as the inter-reference gap from the

work of Phalke et al [21]. Franklin et al [2] did not consider this type of access interval in their work.

The useful-lifetime is de�ned as the number of dynamic instructions between the write of a variable and

the last read of the same variable before the subsequent write to the same variable. This interval is also

sometimes referred to as the def-last-use interval since only the last use of the variable instance is taken

into account when determining this interval. This interval is therefore a property of the write to a variable.

Each write of a variable therefore only has one useful-lifetime interval associated with it. If there are, for

example, three uses following the def of a variable instance, only the last such use is used to determine the

useful-lifetime of the variable instance. Note that the use-lifetime of a variable instance can have a value

of zero. The term useful-lifetime is taken from Franklin [2]. This term is generally synonymous with the

liveness of a variable instance [4]. It should be noted that the term lifetime is often confused with that of

useful-lifetime. For our purposes, we de�ne the term lifetime to refer to the interval from a def of a variable

instance (write to a variable) to the subsequent write of the same variable (thus creating a new variable

instance). This is generally di�erent than the def-last-use interval for the same variable instance. This

de�nition of lifetime is the same as that used previously by Franklin et al [2]. We do not further explore

lifetime intervals in this present work.

Finally, the def-use interval is the number of dynamic instructions from the read of a variable to the

preceding write of the same variable. As the case was with the access-use interval, the def-use interval is a

property of a read of a variable and each such read will generally have a di�erent def-use interval associated

with it. The exception occurs when two reads of the same variable occur in the same instruction (the same

as was the case with the access-use interval above). Our de�nition for the def-use interval is also referred to

as the variable instance age in the work by Franklin et al [2]. The idea of age is apparent since each use of

a variable instance can be thought of occurring at a certain age of the instance as measured by the dynamic

number of instructions since the associated de�nition of the same instance.

A simple, and quite contrived, code example to illustrate the meaning of the three intervals that we

have de�ned is shown in Figure 1. In this simple code example, the term c is an arbitrary immediate

constant encoded within the instruction which is also generally di�erent for each instruction. All of the

instructions produce defs of a variable instance associated with their destination registers. Instructions I3

and I4 also produce uses of the registers r2 and r1 respectively. The def of register r1 in instruction I3

allows for the determination of the useful-lifetime for the previous variable instance (from instruction I1)

held in that register. In the present example, the useful-lifetime for that variable instance is calculated as

0. This result is due to the fact there there were no intervening uses of the register between instructions I1

and I3. Likewise, register r2 is defed in instruction I4 and this allows for the determination of the useful-
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Table 1: Simple code example illustrating the di�erent types of access intervals. These machine parameters

are used for all simulations.

label instruction event intervals determined

I1 r1 <= c def(r1)

I2 r2 <= c def(r2)

I3 r1 <= r2 + c def(r1), use(r2) access-use(r2)=1, def-use(r2)=1, useful-lifetime(r1)=0

I4 r2 <= r1 + c def(r2), use(r1) access-use(r1)=1, def-use(r1)=1, useful-lifetime(r2)=1

I5 r3 <= r1 + r2 def(r3), use(r1), access-use(r1)=1, access-use(r2)=1,

use(r2) def-use(r1)=2, def-use(r2)=1

lifetime for the previous variable instance held in that register (from I2). That is calculated as being being

1 since there was a use of that previous variable instance in instruction I3. Note that useful-lifetimes for a

variable instance cannot be determined until a subsequent write of the corresponding variable is encountered.

Similarly, both instructions I3 and I4 contribute a def-use interval with the value 1 since each represents a use

of the corresponding variable instance just one instruction after its associated def. Finally from instruction

I5, since there are uses of both registers r1 and r2, an access-use and def-use interval can be determined

for each of these. Note that for register r1 an access-use interval with value 1 is determined while a def-use

interval of value 2 is determined. For register r2, both its access-use and def-use intervals have value 1 since

there was a def of that register in just the previous instruction.

Note that an access-use interval and a def-use interval is always determined for each use of a variable

instance, but that a useful-lifetime interval can only be determined on a def of a new variable instance.

Although this example illustrated the determination of the three types of access intervals on registers, these

are determined similarly for memory references.

2.2 Microarchitectural Signi�cance of the Intervals

Each type of variable access interval that we are exploring may have di�erent signi�cance or consequence for

making microarchitectural design decisions. Although all of the intervals discussed previously share similar

attributes, they tend to answer di�erent microarchitectural questions. Firstly some types of intervals are

associated with reads while others are associated with writes. This distinction is used when considering the

applicability of each type of interval metric.

The useful-lifetime interval is a property of a write so data on these intervals would be useful when

exploring the desired microarchitectural consequences of a write occurring. If, for example, the resulting
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operand from a write operation could be bu�ered locally near the execution units in the processor, on

the average it would only have to remain bu�ered until a number of following instructions (in dynamic

program order) equal to its useful-lifetime had an opportunity to snoop the bu�er for the operand. After the

appropriate number of subsequent instructions had an opportunity to snoop the bu�er, it could be assumed

that the likelihood of a further use of that operand is minimal and therefore the operand could be released

or evicted from the bu�er.

In contrast, since both the access-use interval and the def-use interval is a property of a read, microar-

chitectural decisions about how to best satisfy read operands might use the data associated with either of

these types of access intervals. If we �rst consider the case of no intervening bu�ering or caching of operands

between an operand sourcing instruction and its associated sink instructions, then the def-use interval data

would be appropriate to use for possible design decisions. This is so because operand sinking type instruc-

tions could only be satis�ed by either a previous operand sourcing instruction (allowing for operand bypass)

or lacking that, the operand would have to be fetched from the appropriate centralized resource (architected

register or future �le in the case of a register, and the L1 data cache or load-store queue in the case of a

memory operand).

For those distributed microarchitectures that can employ some sort of operand bu�ering or caching

spatially close to the execution units, the access-use interval is the more appropriate metric to determine

design decisions. This is so because a cache of some sort can retain a copy of the desired operand even

though the original generation (original write) of the operand may have occurred in the distant past in

the instruction stream. Either the cache could maintain the operand for a reasonably long period of time

from a preceding write, or perhaps more likely, intervening reads keep the cache from evicting the operand

needed by subsequent sink instructions. Further, a previous read could have resulted in the operand getting

cached from the appropriate centralized resource without even a recent write of the operand having ever

occurred. An example of a distributed microarchitecture that uses interspersed caching of operands among

the execution units is presented in Section 4.

3 Benchmark Statistics

In this section we present the results of accumulating our access interval data on ten benchmark programs.

The programs are taken from the SpecINT-95 and SpecINT-2000 suites. The following programs were

used from SpecINT-95: GO, COMPRESS, IJPEG. The following programs were used from SpecINT-2000:

BZIP2, CRAFTY, GCC, GZIP, MCF, PARSER, and VORTEX. All programs were primarily compiled for

the MIPS-1 ISA, with a few MIPS-2 and MIPS-3 instructions included as a consequence of executing any

system library code. The Silicon Graphics (SGI) vendor compiler was used for all compilations under the
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Irix 6.4 operating system. The programs were optimized using the '-O' compilation 
ag. All programs were

executed for 600 million instructions but data was only collected and processed after skipping the �rst 100

million.

The next subsection presents the results for register access use. The following subsection presents the

results for the memory access use. For both registers and memory, data is shown for access-use, def-last-use

(useful lifetime), and def-use intervals.

3.1 Register Access Interval Results

In this section, we show the register access interval results for our ten benchmark programs. Figure 1 shows

(top to bottom) the three types of access intervals: access-use, useful-lifetime, and def-use. For each type of

access interval, the data for each of the ten benchmark programs are overlaid on the same graph. For each

access interval type, both a density and a distribution is provided. As can be seen from the graphs of Figure

1, all of the benchmark programs perform similarly and have rather short (40 or less) interval lengths for

most of each type of access interval.

3.2 Memory Access Interval Results

In this section, we show the memory access interval results for the same set of benchmark programs. The

data are presented in three sets. The �rst set of data is for register access-use intervals. The second set of

data is for register useful-lifetimes, and the third is for register def-use intervals.

The data for memory access-use intervals are shown in Figures 2 and 3. Results from benchmark programs

BZIP2, COMPRESS, CRAFTY, GCC, and GO are shown in Figure 2 while the results from programs GZIP,

IJPEG, MCF, PARSER, and VORTEX are shown in Figure 3. The data for memory def-last-use (or useful-

lifetime) intervals are shown in Figures 4 and 5. The data for register def-use intervals are shown in Figures

6 and 7. In Figure 8 we show the cumulative data over all benchmark programs. That �gure shows all

three of the access intervals that we explored: access-use, useful-lifetime, and def-use. As can be seen from

the various �gures for the memory access intervals, unlike for the register intervals, these are signi�cantly

varied from one benchmark program to another. The more prominent spikes in several of the density graphs

is evidence of high frequency looping over memory. It is interesting to note that GCC (and to a lesser extent

GO) has some pronounced looping behavior for its access-use intervals but not for its useful-lifetimes nor

def-use intervals. This represents more repeated reading of constant memory variables rather than the more

varied read-write memory behavior of most of the other programs. Also, it is interesting to note that most

programs exhibit rather large useful-lifetimes of 0. A zero-length useful lifetime represents a memory location

that is later overwritten without an intervening read. This can happen when writing to output �le bu�ers,
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Figure 1: Register Access Intervals. Data results for all programs are shown overlaid. The density is shown

on the left and the distribution is shown on the right. All intervals are measured in dynamic numbers of

executed instructions.

for example, but can also be due to control 
ow changes that abandon written variables. The zero-length

useful-lifetimes vary from about 11% and 12% of all program writes for programs such as BZIP2 and GZIP

respectively, to 20% to 61% with GCC, CRAFTY, and VORTEX having the highest amount of abandoned

writes as compared with the others.

4 Application to a Distributed Microarchitecture

In this section we brie
y introduce a proposed distributed microarchitecture that features mechanisms to

facilitate both the bypass of the architected register �le for register operands and the bypassing of both
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Figure 2: Memory Access-Use Intervals. Data results for the BZIP2, COMPRESS, CRAFTY, GCC, and

GO programs are shown. The density is shown on the left and the distribution is shown on the right. All

intervals are measured in dynamic numbers of executed instructions.
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Figure 3: Memory Access-Use Intervals. Data results for the GZIP, IJPEG, MCF, PARSER, and VORTEX

programs are shown. The density is shown on the left and the distribution is shown on the right. All intervals

are measured in dynamic numbers of executed instructions.
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Figure 4: Memory Def-Last-Use Intervals. Data results for the BZIP2, COMPRESS, CRAFTY, GCC, and

GO programs are shown. The density is shown on the left and the distribution is shown on the right. All

intervals are measured in dynamic numbers of executed instructions.
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Figure 5: Memory Def-Last-Use Intervals. Data results for the GZIP, IJPEG, MCF, PARSER, and VORTEX

programs are shown. The density is shown on the left and the distribution is shown on the right. All intervals

are measured in dynamic numbers of executed instructions.
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Figure 6: Memory Def-Use Intervals. Data results for the BZIP2, COMPRESS, CRAFTY, GCC, and GO

programs are shown. The density is shown on the left and the distribution is shown on the right. All intervals

are measured in dynamic numbers of executed instructions.
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Figure 7: Memory Def-Use Intervals. Data results for the GZIP, IJPEG, MCF, PARSER, and VORTEX

programs are shown. The density is shown on the left and the distribution is shown on the right. All intervals

are measured in dynamic numbers of executed instructions.
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Figure 8: Cumulative Memory Intervals over all benchmarks. The density is shown on the left and the

distribution is shown on the right. All intervals are measured in dynamic numbers of executed instructions.

the load-store queue and the L1 data cache for memory operands. Figure 9 provides an overview of our

proposed distributed microarchitecture. Part A of that �gure shows a high-level diagram of a mesh of the

major components making up the execution window of the processor, consisting of reservation stations (each

of which we term an active stations (AS) { since they can issue more than once) and intermixed processing

elements (PE). These two major component types are grouped into an arrangement termed a sharing group

(SG). Instructions dispatched to the ASes in a sharing group contend for and share the common processing

element. This �gure is just illustrative of the arrangements possible. Shown in the �gure are two rows of

SGs, two AS rows per SG, and two SG columns. An interconnection operand forwarding network is also

shown featuring the Memory Forwarding Unit (MFU), which is also shown in more detail in part B of the

�gure. Register operand handling (not shown) is similar to memory operand handling but uses a simpler

bu�ering mechanism. The memory hierarchy is not shown but is typical of conventional machines.

We executed (using simulation) the same benchmark programs on this distributed microarchitecture (on
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Figure 9: Overview of a proposed distributed microarchitecture. A) shows a 2D mess of groups of instruction

reservation stations and processing elements, along with an operand communication fabric interconnecting

all components. B) shows a more detailed view of a Memory Forwarding Unit (MFU) that provides L0

caching of local memory operands.

Table 2: Simulation results showing the percent memory loads satis�ed through memory operand bypass. Ten

benchmark programs on two machine geometries were simulated.

geometry bzip2 compress crafty gcc go gzip ijpeg mcf parser vortex MEAN

8-4-8 45% 35% 34% 24% 27% 54% 14% 23% 39% 50% 34%

8-8-8 46% 28% 37% 22% 22% 53% 13% 24% 35% 49% 33%

two machine geometries) and accumulated data on the percent memory loads that were satis�ed without

having to resort to snooping the load-store queue or L1 data cache. Each of the machine geometries simulated

featured a total of 64 evenly distributed L0 caches within the execution mesh. Each L0 cache had 32 single-

word fully-associative entries. The results are shown in Table 2. The machine geometry (in the left-most

column of the table) gives the: SGs rows, the AS rows per SG, and the SG columns respectively. The 8-4-8

geometry machine as a total of 256 instructions and 64 PEs in its execution window. The 8-8-8 machine has

twice as many instructions (a total of 512) sharing the same number of PEs. As can be seen, a substantial

percentage of all memory load requests are satis�ed through e�ective bypass of the conventional centralized

memory hierarchy.
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5 Summary

We have presented data for various access intervals associated with both register and memory variable

instances. The data for the register intervals is consistent with and con�rms the prior work by Franklin et

al. That data shows that for most general purpose sequential program codes (for example SpecINT), that

as many as 80% of the register reads (a use of the variable instance) will have had their instances de�ned

within the preceding 25 dynamic instructions (this is drawn from the def-use results). This indicates that for

large instruction window sizes (where 25 is a small fraction of the size) that there is a good chance that the

associated register operand can come directly from the de�ning instruction without having to be �rst stored

in either the architected register �le or some other speculative, but centralized, resource (such as a future

�le). When some form of register bu�ering or caching is employed, it can be expected that the percent of

register reads satis�ed within the execution window will be even higher, and could average about 95% of all

reads having been either de�ned or present in a cache within the last 25 dynamic instructions.

For memory variable instances, there is not as much likelihood of any given memory read (load instruc-

tion) having its variable instance already within the execution window (as is the case with register variable

instances). However, for memory reads, the cost of having to go outside the execution window of the pro-

cessor is higher than as for registers and any possible operand bypass of either the load-store queue or the

L1 data cache is still welcomed. Our data shows that about 30% of memory read operations can expect to

have their preceding instance de�nition within the last 100 dynamic instructions (def-use characterization

results). Although this is not as useful for operand bypass, as in the case of registers, any bypass that can

occur in these cases reduces the access burden on both the load-store queue as well as the L1 data cache.

Similarly to the situation for registers, greater percentages of reads (memory load requests) can be expected

to be satis�ed within the execution window alone (bypassing the LSQ and L1 cache) when distributed caches

(distributed L0 caches) are employed. From the access-use interval characterization data, about 55% of all

memory loads could bene�t by operand bypass of centralized resources for machines that can have the same

previous 100 dynamic instructions within the window. Although more memory reads can be satis�ed with

larger machine execution windows, the returns are diminishing.

Simulation results from a proposed distributed microarchitecture featuring both register and memory

operand bypass with caching resulted in an average of about 33% of all memory loads being satis�ed through

operand bypass of the conventional centralized memory hierarchy. Two simulated machines with 256 and

512 instructions within the execution window respectively resulted in a similar average amount of memory

operand bypass of the LSQ and L1 data cache. At �rst, these results are lower than the characterization data

might suggest, but a number of other machine factors are involved in establishing opportunity for operand

bypass that were not speci�cally examined in this work. These other factors are a study of ongoing research.
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It is expected that as distributed microarchitectures employ increasingly larger instruction windows, that

it will become more attractive to use memory operand bypass as a performance enhancement mechanism.

Current research microarchitectures are already suited to take advantage of even this amount of memory

temporal locality.
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